Consumers Will Soon Have Devices In Their Hands To Detect GMO and Toxic Foods

preventdisease.com
May 26, 2013
In the not too distant future, consumers will be able to run on-the-spot tests for environmental toxins, GMOs, pesticides, food safety and more with their smartphones and other hand-held devices.
Every human being on every developed nation on Earth, whether living in a rural or isolated area, in the middle of a large city, or near an industrialized area, now contains at least 700 contaminants in their body including pesticides, pthalates, benzenes, parabens, xylenes and many other carcinogenic and endrocrine disrupting chemicals.
We are being bombarded on a daily basis by an astronomical level of toxicity, all controlled bychemical terrorists on behalf of the food industry. Morever, many of these toxins affect our fertility and those of successive generations.
It’s time for people to know exactly what they are putting in their bodies and technology is coming to the rescue. University of Illinois at Urbana-Champaign researchers have developed a cradle and app that uses a phone’s built-in camera and processing power as a biosensor to detect toxins, proteins, bacteria, viruses and other molecules.
“We’re interested in biodetection that needs to be performed outside of the laboratory,” said team leader Brian Cunningham, a professor of electrical and computer engineering and of bioengineering at Illinois. “Smartphones are making a big impact on our society — the way we get our information, the way we communicate. And they have really powerful computing capability and imaging. A lot of medical conditions might be monitored very inexpensively and non-invasively using mobile platforms like phones. They can detect molecular things, like pathogens, disease biomarkers or DNA, things that are currently only done in big diagnostic labs with lots of expense and large volumes of blood.”
“Modern biological research is also allowing an extension of laboratory devices on to small computer chips to detect biological information within DNA sequences,” said biotech specialist Dr. Marek Banaszewski. “Bioinformatic algorithms within programs will aid the identification of transgenes, promoters, and other functional elements of DNA making detection of genetically modified foods on-the-spot and real-time without transportation to a laboratory.”
The wedge-shaped cradle created by Cunningham’s team contains a series of optical components — lenses and filters — found in much larger and more expensive laboratory devices. The cradle holds the phone’s camera in alignment with the optical components.

No comments: